Recurrent system of equation (Variant of original version)

Find all real solutions of the folloving system of equations

$$x_k x_{k+1} + 1 = 4x_k, k = 1, 2, \dots, 2019$$

 $x_{2020} x_1 + 1 = 4x_1$

Solution by Arkady Alt, San Jose , California, USA.

We will solve the following general version of the problem:

For any natural $m \ge 2$ find all real solutions of the following system of equations

(1)
$$\begin{cases} x_k x_{k+1} + 1 = 4x_k, k = 1, 2, \dots, m-1 \\ x_m x_1 + 1 = 4x_1 \end{cases}$$

Let
$$t_k := 4 - x_k, k = 1, 2, ..., n$$
. Then (1) \iff
$$\begin{cases} x_{k+1} = \frac{1}{4 - x_k}, k = 1, 2, ..., m - 1 \\ x_1 = \frac{1}{4 - x_m} \end{cases} \Leftrightarrow$$

(2)
$$\begin{cases} t_{k+1} = 4 - \frac{1}{t_k}, k = 1, 2, \dots, m - 1 \\ t_1 = 4 - \frac{1}{t_m} \end{cases}$$
 and $x_k = 4 - t_k, k = 1, 2, \dots, m$.

Consider a sequence $(t_n)_{n\in\mathbb{N}}$ defined by $t_1=t\neq 0, t_{n+1}=4-\frac{1}{t_n}, n\in\mathbb{N}$.

Let $p_n := t_1 t_2 ... t_n, n \in \mathbb{N}$ and $p_0 = 1$. Then $p_1 = t, t_n := \frac{p_n}{p_{n-1}}, n = 1, 2, ...,$ and

$$t_{n+1} = 4 - \frac{1}{t_n}$$
 becomes $\frac{p_{n+1}}{p_n} = 4 - \frac{p_{n-1}}{p_n} \iff p_{n+1} - 4p_n + p_{n-1} = 0, n \in \mathbb{N}.$

Consider sequence (a_n) defined by $a_0 = 0, a_1 = 1$ and $a_{n+1} - 4a_n + a_{n-1} = 0, n \in \mathbb{N}$.

Since
$$\det \begin{pmatrix} a_{n+1} & a_n \\ a_n & a_{n-1} \end{pmatrix} \neq 0, n \in \mathbb{N} (a_{n+2}a_n - a_{n+1}^2 = a_{n+1}a_{n-1} - a_n^2, n \in \mathbb{N} \text{ implies}$$

 $a_{n+1}a_{n-1}-a_n^2=a_2a_0-a_1^2=-1$) then p_n can be represent as linear combination of a_n and a_{n+1} , namely $p_n=c_1a_n+c_2a_{n+1}, n\in\mathbb{N}\cup\{0\}$ for some $c_1,c_2\in\mathbb{R}$.

Using initial conditions $p_0 = 1, p_1 = t$ we obtain $\begin{cases} 1 = c_1 a_0 + c_2 a_1 \\ t = c_1 a_1 + c_2 a_2 \end{cases} \Leftrightarrow \begin{cases} c_2 = 1 \\ c_1 = t - 4 \end{cases}.$

Hence,
$$p_n = (t-4)a_n + a_{n+1}$$
 and $t_n = \frac{(t-4)a_n + a_{n+1}}{(t-4)a_{n-1} + a_n}, n \in \mathbb{N}$.

Coming back to the system (2) and noting that $a_n > 0$ for any $n \in \mathbb{N}$ we obtain

$$t_1 = 4 - \frac{1}{t_m} \iff t = \frac{(t-4)a_m + a_{m+1}}{(t-4)a_{m-1} + a_m} \iff (t-4)a_m + a_{m+1} = t(t-4)a_{m-1} + ta_m \iff$$

$$a_{m-1}t^{2} - 4a_{m-1}t + (4a_{m} - a_{m+1}) = 0 \iff a_{m-1}t^{2} - 4a_{m-1}t + a_{m-1} = 0, m \ge 2 \iff t^{2} - 4t + 1 = 0 \iff t = 2 \pm \sqrt{3} \iff x = 4 - (2 \pm \sqrt{3}) = 2 \mp \sqrt{3}.$$

Thus,
$$x_1 = x_2 = ... = x_m = 2 + \sqrt{3}$$
 and $x_1 = x_2 = ... = x_m = 2 - \sqrt{3}$ are all real solution

of the system (1). * Since $a_1 = 1, a_2 = 4$ then for any $n \in \mathbb{N}$ assuming $a_{n-1} < a_n$ and $a_n > 0$ we obtain $a_{n+1} - a_n = 2a_n + (a_n - a_{n-1}) \Rightarrow a_{n+1} - a_n > a_n - a_{n-1} \Rightarrow a_{n+1} - a_n > 0 \Leftrightarrow a_{n+1} > a_n$ and, therefore, $a_{n+1} > 0$. Thus, by Math Induction $a_n > 0, \forall n \in \mathbb{N}$.